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INTRODUCTION

According to the World Health Organization 
statistics, vector-borne diseases result in over one 
billion infections and one million deaths annu-
ally. Mosquito-borne diseases (MBD) represent 
a primary public health concern in tropical and 
subtropical nations among them. Certain species 
of mosquitoes are vectors of pathogens respon-
sible for spreading life threatening diseases such 
as Dengue, Malaria, Yellow fever, West Nile vi-
rus, Chikungunya and Zika virus. The harmful 
mosquito species are found in the genera Ae-
des, Anopheles and Culex (WHO, 2000). Table 
1 lists some of the vector mosquito genera and 
the diseases transmitted by them. The preventive 
measures for MBDs are mainly based on vec-
tor control as no effective vaccine is available 
to date (Benelli et al., 2016). Vector surveillance 

and vector control interventions are taken up by 
the local government and public health officials 
to study and control mosquito population. Vec-
tor surveillance is aimed to evaluate mosquito 
population distribution, density and species dis-
tribution models (SDMs) – also known as eco-
logical niche models (i.e., species prevalent in 
a geographic area) Vector control strategies are 
implemented to contract the population of vec-
tor mosquito species and prevent the spread of 
MBDs (Barker & MacIsaac, 2022; Fournet et al., 
2018; Wilson et al., 2020) 

The commonly employed vector control 
methods include: Environmental hygiene, Lar-
viciding , Biological control, Chemical control 
through mosquito insecticides, sprays and toxic 
lures and individual protection (National Cen-
ter for Vector Borne Diseases Control, 2023). In 
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spite of the developments in these approaches 
MBDs continue to grow. Laying mosquito traps is 
an effective targeted and ecofriendly alternate to 
the above methods. The specimens collected from 
these traps can provide information essential for 
targeted vector control interventions such as: 
changes in mosquito populations, species abun-
dant in a geographical area etc. The current meth-
od involves examining the trapped specimens un-
der microscope in laboratory by skilled taxono-
mists for genera, species or gender identification 
based on the morphological features. The process 
is manual and time intensive and requires sig-
nificant domain expertise (Goodwin et al., 2020; 
Sasmita et al., 2021). Also there is a scarcity of 
skilled taxonomists. For these reasons, it is im-
portant to automate the task of mosquito species 
classification. In recent years, several Machine 
learning (ML) and Deep learning (DL) approach-
es have been developed for the rapid and precise 
species identification using features unique to 
mosquito species such as wing beat frequency, 
morphology of wings and whole body. Among 
these, computer vision techniques coupled with 
deep convolutional neural networks (DCNNs) 
have demonstrated expert-level classification ac-
curacy in insect classification tasks. Automated 
mosquito identification models can be deployed 
to detect the species prevalent in a geographic re-
gion. The vector control efforts can be tailored to 
the particular region and species present, which 
can increase their effectiveness. In general, au-
tomated taxonomic identification is valuable not 
only to mosquitoes but also for insects in general 
as it is beneficial in many contexts such as harm-
ful vector control, biodiversity monitoring, sort-
ing and detecting biological specimens and pre-
venting epidemic outbreaks. In the past decade 
there have been several research studies aimed 
to automate the task of insect genus/ species / 

gender classification. The review mainly focuses 
on the application of ML and DL approaches. In 
these studies, the models are built to predict the 
mosquito genus, species and gender based on the 
acoustic features: (wing beat frequency) or the 
morphological features extracted from body parts 
(wings) or whole insect body (Martineau et al., 
2017; Siddiqui & Kayte, 2022). 

Acoustic approaches

The wing beats generated by mosquitos are 
unique to each species. Therefore the acoustic 
signal generated by their wing beats can serve 
as a reliable feature for discerning the species of 
mosquitoes. The acoustic studies for species clas-
sification are based on the audio signal record-
ing and spectrum analysis of mosquito wing beat 
waveforms. The audio signal produced by the 
mosquito flight is recorded using optical sensors 
and smart phone microphone The features derived 
from the audio waveforms are used to train a ML 
or DCNN classifier for genera, species and gen-
der identification (Chen et al., 2014; Fernandes et 
al., 2021; Ouyang et al., 2015; Silva et al., 2013). 
Identifying species through this method poses 
challenges as there can be overlapping frequen-
cies and filtering the ambient noise is extensively 
difficult (Spitzen & Takken, 2018). 

Vision based approaches

Vision based automatic classification of mos-
quitoes has been studied by many researchers due 
to the developments in image processing and ma-
chine learning techniques. These approaches in-
volve training a ML or DL model on images dataset 
to predict the genera, species and gender. The algo-
rithms examine the distinctive morphological fea-
tures of mosquitoes and classify them accurately. 

There have been studies for genera / species 
identification based on the shape and size of body 
parts. Important among these is the wing geomet-
ric morphometrics (geometry of wing venations, 
structure, shape and size of wings) (de Souza et 
al., 2020; Virginio et al., 2021; Wilke et al., 2016). 
However there are several difficulties in image 
acquisition process with this approach such as: 
 • Requirement of special laboratory setting to 

carry out the removal of body parts and take 
photographs for inspection.

 • Tedious to capture images in a constrained / 
controlled position and

Table 1. Mosquito-borne diseases
Vector Diseases caused

Aedes

Chikungunya
Dengue

Lymphatic filariasis
Rift Valley fever

Yellow Fever
Zika

Anopheles Lymphatic filariasis
Malaria

Culex
Japanese encephalitis

Lymphatic filariasis
West Nile fever
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 • Wings and other body parts can be damaged or 
deformed during the process. 

Due to these challenges there are limited 
numbers of datasets available and the datasets 
have less number of images per species. 

Classification based on the whole body

There have been image based ML initiatives 
to automatically classify insects like flies and 
bees, grasshoppers, beetles mosquitoes butterflies 
and crop insects (Martineau et al., 2017). These 
techniques involve extracting the hand-crafted 
features that are specific to a genus or species 
from the images data set and then training a ML 
classifier to predict the class of new data based on 
the predefined features. This approach involves 
identifying and selecting specific features of an 
image that are believed to be relevant for clas-
sification. The important features considered are: 
a) global properties such as: color histogram, 
texture and shape features (e.g., area, perimeter, 
eccentricity, major and minor axis length, circu-
larity, solidity, compactness), wavelet coding b) 
local features (Histogram of Oriented Gradients 
(HOG) and Scale Invariant Feature Transforms 
(SIFT). The training algorithms used were mainly 
K-Nearest Neighbor (KNN), Naïve Bayes(NB), 
Kmeans and also Support Vector Machine (SVM) 
(Joshi & Miller, 2021; Kasinathan et al., 2021). 

A SVM based binary classification model was 
proposed to identify Aedes aegypti mosquito from 
other species such as Aedes albopictus and Culex 
with an accuracy of 92.5% (De Los Reyes et al., 
2016). The prior work by Minakshi (2018) at-
tempted to classify mosquito images belonging to 
seven different species with an accuracy of 83.3% 
on a dataset of 60 smart-phone images by applying 
Random Forests (RF) algorithm. In a later study, 
they designed a system with unsupervised cluster-
ing and SVM algorithm for the classification of 
nine mosquito species. The authors constructed an 
images dataset of adult female mosquitoes belong-
ing to nine species and extracted local textures, 
local binary patterns and spatial dependencies 
among textures (Haralick features) for training the 
classifier. The images were captured by Samsung 
Galaxy phone and background segmentation was 
applied. The system was able to achieve an overall 
accuracy of 77.5% for all nine species (Minakshi 
et al., 2018). In another study, a SVM based model 
was developed to identify mosquitoes from bees 

and flies using SIFT feature extraction with 85.2% 
accuracy (Fuchida et al., 2017). Mosquito images 
were classified at the genera level using images 
dataset of Aedes and Culex mosquitoes (Image 
Dataset of Aedes and Culex Mosquito Species, 
IEEE DataPort, n.d.; Rustam et al., 2022). They 
introduced a novel feature extraction technique 
RIFS by combining region of interest (ROI) based 
image filtering and forward features selection 
(FFS) technique. The highest accuracy obtained 
was 99.2% with Extra tree classifier (ETC) fol-
lowed by 98.4% with RF algorithm. 

Though ML algorithms have been used suc-
cessfully for the vision based classification, there 
are certain limitations in applying them for the 
classification of small insects like mosquitoes. 
ML approaches demand manual feature extrac-
tion. The effectiveness of these models depends 
on the features extracted. The features used to 
train the model must be distinctive enough to dis-
cern between different species. Designing effec-
tive and relevant feature extractors from mosqui-
to images requires significant domain expertise 
(Valan et al., 2019; Xia et al., 2018). 

In recent years, deep learning methods, par-
ticularly convolutional neural networks (CNNs), 
have demonstrated exceptional performance in 
computer vision related tasks as compared to ML 
techniques. A deep neural network can learn com-
plex feature representations from the input data 
automatically. The DCNNs learn in an end-to-end 
manner, starting from raw images to target class. 
This alleviates the necessity for manual design 
of feature extractors. However, training a deep 
learning model is time-consuming and requires 
sufficiently large amount of training data. There-
fore, transfer learning is commonly used to over-
come this problem. It involves leveraging the fea-
ture representations learned by a pretrained CNN 
model to train a new model on a smaller dataset 
(Pise et al., 2022; Xia et al., 2018)

The research by (Motta et al., 2019) leveraged 
three pre trained CNNs (LeNet, GoogleNet, and 
AlexNet) to identify three mosquito species: Ae-
des aegypti, Aedes albopictus and Culex quinque-
fasciatus. The dataset included images from Ima-
geNet database and pictures of mosquitoes shot 
with camera in a lab setting. The GoogleNet at-
tained maximum test accuracy of 76.2%. Okaya-
su (2019) compared the efficiency of SVM algo-
rithm based on handcrafted features and ResNet 
CNN in order to discern the images of 3 mosquito 
species i.e., Aedes albopictus, Anopheles stefensi, 
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and Culex pipiens pallens. They obtained an ac-
curacy of 82.4% with ML and 95.5% with ResNet 
on an augmented dataset. 

A transfer learning model based on Incep-
tion-ResNet V2 architecture achieved an accu-
racy of 80% in classifying mosquitoes images 
of 9 species from Aedes, Anopheles and Culex 
genera. The DCNN was trained on a database 
of 25,867 augmented pictures of 250 mosquito 
samples captured with different mobile cam-
eras (Minakshi et al., 2020). A study based on 
fine-tuned transfer learning with three DCNNs 
(VGG-16, ResNet-50, SqueezeNet) and data aug-
mentation was conducted to classify eight species 
of adult female mosquitoes using a database of 
3,600 images taken in laboratory settings. VGG-
16 exhibited the highest average test classifica-
tion accuracy of 97.19% (Park et al., 2020). 

A feature extraction based transfer learn-
ing approach was proposed to classify Aedes 
and Culex mosquito images at the genera level 
with 92.5% accuracy by transfer learning the 
GoogLeNet model (Pise et al. 2022). However, 
they did not include identification at the species 
level.  The review unveils that most of the previ-
ous vision based studies included dataset of cam-
era captured images of female mosquitoes. 

The proposed study aims to classify the spe-
cies based on the mobile captured images of both 
male and female mosquitoes in a transfer learning 
paradigm. The key contributions of our study are:
1) A dataset of mobile captured images of mosqui-

toes belonging to three species: Aedes aegypti, 
Anopheles stephensi and Culex quinquefasciatus. 

2) Investigate the capability of transfer learning 
with pretrained DCNNs for the multi-class 
classification problem to classify the images in 
our dataset into correct species. 

3) Evaluate the performance of two transfer learn-
ing approaches: (a) feature extraction transfer 
learning, (b) fine-tune transfer learning by un-
freezing the layers of the base model. 

PROPOSED METHODOLOGY

Visual transfer learning technique

Deep learning techniques have facilitated to 
solve complex computer vision problems such as 
object recognition and image classification with 
excellent results. However in practice, training a 
CNN to achieve good performance requires huge 
training data and a long training time. Training 

a DCNN on a small dataset leads to the phe-
nomenon of “over fitting”. Transfer learning is 
a technique commonly applied to address these 
limitations in deep learning. It aims to apply the 
knowledge extracted from a source task to solve a 
similar new task. A framework for transfer learn-
ing is defined in terms of domain, task and prob-
abilities (Pan & Yang, 2010; Weiss et al., 2016).

A domain D is defined as a 2-element tuple:

 D = {X, P(X)} (1)

where: X – feature space, P(X) – marginal prob-
ability distribution where:

 X = {x1, x2, x3,.. xn }, x i ∈ X  (2)

A task T is defined as a two element tuple in 
the domain D: 

 T = {Y, f(.)} 

where: Y – a label space and f(.) – a predictive 
function that can be learned from the 
training samples (i.e. feature vector, la-
bel) pairs {(xi, yi) | i ∈ {1, 2, 3, …, N}}, 
where xi ∈ X and yi ∈ Y.

From a probabilistic viewpoint, for each fea-
ture vector xi in the domain D, f (xi) calculates its 
corresponding label.

 f(xi) = p(yi | xi) (3)

Task T can be represented as:

 T = {X, P(Y | X)} (4)

Given a source domain Ds and a correspond-
ing learning task Ts, a target domain Dt and learn-
ing task T t, transfer learning is a technique that 
aims to refine the learning of conditional prob-
ability distribution P(Yt | Xt) in Dt by utilizing the 
information gained from Ds and Ts, where Dt ≠ Ds 
or Tt ≠ Ts . There can be multiple source domains. 

In visual transfer learning paradigm, feature 
representations learned by the CNN on a very large 
dataset (source domain) task can be repurposed 
by a new CNN for a new related task on a differ-
ent dataset. There are many state-of-the-art deep 
learning models developed for computer vision 
and natural language processing (NLP) problems. 
These CNNs are trained on a huge generic data-
set (e.g., ImageNet, which consists of 1.2 million 
images across 1000 classes) for a large scale im-
age-classification task (ImageNet, n.d.). The per-
formance of these networks is better than human 
experts. In deep transfer learning, a pretrained 
network is reused as a fixed feature extractor for a 
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different problem with small changes. The target 
network is trained on a new dataset D t for a simi-
lar task Tt.. The advantage is that the new network 
is trained without having to start from scratch. It 
speeds up the process of training a new CNN and 
solves the problem of small size dataset in the tar-
get domain. Also it is demonstrated that gener-
alization capability of transfer learned models is 
superior (Krizhevsky et al., 2017). 

Data collection

A key challenge in training a deep learning 
model is the availability of a sufficiently large 
quality dataset for accurate results. To this end, 
the authors prepared a dataset consisting of im-
ages of adult mosquitoes of both genders belong-
ing to three species: Aedes aegypti, Anopheles ste-
phensi and Culex quinquefasciatus. The mosquito 
samples were collected from the mosquito colony 
maintained by Ross Life lab, India. The specimens 
were imaged using a handheld One Plus mobile 
RGB camera of 48 Mpx under day light condi-
tions. The photographs were shot at various direc-
tions to capture morphological features unique to 
each of the species. The description of the dataset 
and a sample image of each of the species from the 
dataset are presented in Table 2. We performed a 
series of data augmentation to the original images 
to expand the size of the dataset and to address 
the inadequate number of samples available. The 
original pictures were resized to 256×256 pixels 
and image augmentation transformations: random 
rotations, zooms, shifts, shears, flips, and Gauss-
ian blur etc. were applied to all the resized original 
images. As a result of this we obtained 2640 im-
ages (Pise et al., 2022). 

The dataset was split randomly into 70–20% 
partitions for model training and validation. Re-
maining 10% portion of the data was set aside for 
testing. A 5-fold cross validation technique was 
employed to train the models and the validation 
dataset was used to check the progress of training.

Experimental design

The objective of this study was to leverage 
transfer learning for the classification of vector 
mosquito species having morphological resem-
blance. To this end, we investigated pre-trained 
DCNN models in two transfer learning approach-
es: Feature extraction and Fine-tuning. We im-
ported three pretrained DCNN models: VGG-16, 

ResNet-50 and GoogLeNet. In order to train and 
test our models, we employed Keras, an open-
source Python 3.7 library, along with the Tensor-
flow 2.1.0 deep learning framework, and execut-
ed on an Nvidia GTX 1050 GPU platform.

As shown in Figure 1, a DCNN consists of 
a series of convolution (Conv.) layers followed 
by dense layers i.e., Fully Connected (FC) lay-
ers. The Conv. layers learn different features of 
the input images in consecutive iterations of back 
propagation algorithm. The initial layers capture 
generic features, while the higher layers learn fea-
tures relevant to the specific task. The FC layers 
predict the image class based on the feature maps 
extracted in the preceding layers. We can leverage 
the knowledge gained by a DCNN, from a large 
dataset and adapt it to a new task.

Hyper parameter configuration

Prior to training a CNN, we need to define 
and optimize several key parameters to attain bet-
ter classification accuracy. The parameters were 
finalized by iteratively training the networks and 
analyzing statistically to find the optimal value. 

Table 2. Dataset description

Species Number 
of images Sample Image

Aedes aegypti 900

Anopheles 
stephensi 540

Culex guin-
quefasciatus 1208
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Training Algorithm: Adam (Adaptive Mo-
ment Estimation) optimizer is the default choice 
to train most of the deep learning applications. 
Networks trained using this algorithm reveal 
faster training times and require tuning of fewer 
parameters in order to decrease the loss function. 
All the three models were trained in a 5-fold cross 
validation approach using ADAM optimizer al-
gorithm with the parameters β1 and β2 set to 0.9 
and 0.999 respectively.

Loss Function: In terms of ML, the problem 
being solved is a multi-class classification task 
and cross-entropy is the preferred loss function 
for multiclass classification. The function mini-
mizes the error i.e., the average difference be-
tween the actual and predicted probability distri-
butions for all the target classes. We have chosen 
‘categorical cross – entropy’ function from Keras 
library to train the models.

Learning Rate: The learning rates were initial-
ized ranging from 3×10−5 to 5×10−3 for different 
models. The training was performed for 50 epochs.

Feature extraction transfer learning

This is the most commonly used method for 
implementing deep transfer learning. The pre 
trained model is utilized to extract the features 
from the images of new dataset as it has previ-
ously learnt feature maps on a large generic da-
taset. To implement this, the convolutional layers 
of the pre trained CNNs were freezed, with their 
‘imagenet’ weights by setting models’ trainable 

attribute to false. That is the weights of these lay-
ers are prevented from being updated during train-
ing process. The last FC layer of the pretrained 
models was replaced with a new FC layer and 
initialized with random weights. Then the net-
works were trained with our dataset to update the 
weights of the new FC layers and predict the three 
new class labels i.e., mosquito species (Fig. 2). 

Fine-tuned transfer learning

The second group of experiments was carried 
out to test the impact of fine- tuning the models 
converged in the first experiment. It is observed 
that fine- tuning the pretrained models by un-
freezing all or last few layers of the network can 
improve the performance further (Fig. 3).

In the proposed work, weights of all the lay-
ers of the models trained in the first experiment 
were rendered trainable (unfrozen) by setting the 
trainable attribute to true. Then the entire model is 
recompiled and retrained end-to-end with a very 
small learning rate 0.00001. This permits the mod-
els to incrementally update higher-order feature 
maps that are more specific to the new dataset.

RESULTS AND DISCUSSION

The three pretrained DCNNs were trained 
in two transfer learning approaches with the set-
tings specified for 50 epochs. The performance of 
the models was assessed in terms of classification 

Figure 1. Pretrained DCNN model

Figure 2. Feature extraction transfer learning
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accuracy and loss. Accuracy is computed as the 
fraction of predicted class labels that precisely 
match the actual class labels. The loss function 
gives a measure of the error made by the model. 
The validation accuracy and validation loss after 
each epoch is visualized for both experimental set-
ups as plotted in Figure 4 and Figure 5. The valida-
tion accuracy of all the models got stabilized after 
30 epochs and attained an optimal value within 50 

epochs. It can be observed from the graphs that all 
the models exhibited remarkably higher validation 
accuracy when they were fine-tuned by unfreez-
ing the layers. GoogLenet model outperformed the 
other two models with the highest validation ac-
curacy of 96.2% in feature extraction and 98.5% 
in fine-tuned transfer learning. The performance 
of the models was evaluated on the test dataset 
which included the images that were not used for 

Figure 3. Fine-tuned transfer learning

Figure 4. Validation accuracy and validation 
loss in feature extraction transfer learning

Figure 5. Validation accuracy and validation 
loss in fine-tuned transfer learning
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model training or validation. Table 3 presents the 
test accuracies of the models in the two experimen-
tal settings. It can be seen that fine-tuning resulted 
in higher classification accuracy than feature ex-
traction transfer learning regardless of the model. 
Google net turned out be the best classification 
model in both transfer learning approaches.

CONCLUSION

The study demonstrates the capability of visual 
transfer learning with pretrained CNNs to accurate-
ly classify three vector mosquito species. The results 
reveal that fine tuning with unfreezing layers of the 
base models improved the classification accuracy 
as compared to the feature extraction transfer learn-
ing. There is a prospective utility of deploying such 
automated models on a device or mosquito trap to 
track the harmful species circulating in geographic 
areas. Such findings can be used by public health 
agencies for targeted and effective vector control in-
terventions. This could alleviate the prevalence of 
mosquito-borne diseases. The technique could po-
tentially replace the manual time intensive task of 
taxonomic identification of mosquitoes. 
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